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Effect of Face-Sheet Anisotropy on Buckling
and Postbuckling of Sandwich Plates
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A study of the effect of anisotropyof face sheets on buckling and postbucklingof sandwich � at panels subjected to
both mechanical and thermal loads is presented. The mechanical loads consist of uniaxial compressive/tensile edge
loads, while the temperature is assumed to exhibit an antisymmetric variation through the panel thickness. The
study is carried out in the context of a geometrically nonlinear theory of sandwich structures that also incorporates
the effect of unavoidable stress-free initial geometric imperfections. A detailed analysis of the in� uence of a large
number of parameters associated with the panel geometry, material properties of the core, � ber orientation and
stacking sequence in the face sheet, and character of tangential boundary conditions (i.e., movable or immovable)
on buckling strength and postbuckling response is accomplished, and pertinent conclusions are outlined.

Nomenclature
a = distance between the global midsurface

and the midsurface of facings
E1 , E2 = in-plane Young’s moduli, Msi
ei j = three-dimensionalstrain tensor
G12, Ḡ13, Ḡ23 = in-plane shear modulus of material of face

sheets; transverse shear moduli of the core, Msi
h p , h, h̄, H = thickness of each constitent ply of face-sheets,

thickness of the facings, thickness of the core,
and total thickness of the structure, respectively

L1 , L2 = panel length and width, respectively
N = number of layers in the upper facings, equal

to that in the bottom facings
N̄ 13, N̄ 23 = transverse shear stress resultants associated

with the core
q3, qpq = transverse load and its modal amplitudes,

respectively
Si j = second Piola–Kirchhoff stress tensor
T (x1 , x2, x3), = three-dimensional temperature � eld, thickness
1
T (x1, x2),

1
T pq

temperature distribution and its modal
amplitudes, respectively

Tu (x1, x2), = temperature distributionson the top and bottom
Tb(x1 , x2) faces of the sandwich panel, respectively
Va , V3 = three-dimensional tangential and transversal

displacement components±
V 0

a ,
±
V 0 0

a = tangential displacement components of points
of midplanes of the bottom and top face sheets,
respectively

v3 ,
±
v3; = de� ection, initial geometric imperfection; their

wmn ,
±
w mn modal amplitudes, respectively

x a , x3 = tangential and thicknesswise coordinates,
respectively

D 1 = end shortening in the x1 direction
²i j = two-dimensional strain measures
k m , l n = m p / L1, n p / L2, (m, n =1, 2, . . .)
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k a b , ˆk a b = thermal compliance expansion coef� cients and
their modi� ed counterparts, respectively

n a , g a = two-dimensional tangential displacement
measures

w = panel aspect ratio (́ L2 / L1)

Subscripts

(¢ ) f , (¢ )c = quantities associated with the face and core
layers, respectively

(¢ ), i = @(¢ ) / @xi

(¢ )n , (¢ )t = normal and tangential in-plane directions to an
edge, implying (n =1, t =2) or (n =2, t =1)

˜
(¢ ) = prescribed quantity

Superscripts

(¢ ) 0 , (¢ ) 0 0 , ¯(¢ ) = quantities af� liated with the bottom face sheets,
upper face sheets, and core layer, respectively

Introduction

A RENEWED interest in the use of sandwich structures in the
construction of advanced supersonic/hypersonic � ight vehi-

cles and reusable space transportionsystems has been demonstrated
in the last decade. Some of the underlying reasons and motivation
for this interest are, among others, 1) the possibility to integrate
the advanced� ber-reinforcedcompositematerials in the face sheets
and the core, their use being likely to provide increased bending
stiffness with little resultant weight penalty, long fatigue life, and
directional properties, as well as the capability of operating in a
high-temperatureenvironment;2) the possibility to provide thermal
and sound insulation characteristics, as well as a smooth aerody-
namic surface, in a higher speed � ow environment;and 3) extended
operational life as compared to stiffened-reinforcedstructures that
are weakened by the appearance of stress concentration. Needless
to say, the developmentof new manufacturingtechniquesthat make
the useof sandwichstructureseconomicallyfeasiblehascontributed
heavily to the widespread use of such structures in the aerospace
industry.

As is well known, any combination of biaxial loading and exter-
nal pressure can be found in a typical aircraft structure. Moreover,
high-speedand launch vehicles are likely to be exposedduring their
missions to severe temperature � elds. In such a context, develop-
ment of a comprehensive structural model of sandwich � at panels
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and of adequatecomputationalmethodologiesable to address prob-
lems of determination of their buckling strength and load-bearing
capabilities in the nonlinear range represent issues of practical im-
portance in the design of such structures.

One of the goals of the paper is to developa rather comprehensive
theory of sandwich � at panels incorporating geometric nonlinear-
ities in the von Kármán sense, the initial geometric imperfection,
and the directionalityproperty of the materials of face sheet. In par-
ticular, the directionalpropertyof � brouscompositescan be used to
enhance the buckling strength and the load-carrying capacity in
the nonlinear range. In spite of the available literature devoted to
the modeling and analysis of � at sandwich panels with laminated
face sheets (for example, see Ref. 1, which is the most recent and
comprehensivereview of the state of the art in the � eld of sandwich
structures), to the best of the authors’knowledge,the problemof the
enhancement of the load-carrying capacity of � at sandwich panels
in both linear and nonlinearrangesusing the tailorabilitypropertyof
laminated face sheets has not yet been addressed.For special cases
related to linear stabilityproblems,a numberof results can be found
in Refs. 2–7.

To be reasonably self-contained, in the following section, the
basic equations of sandwich plate theory incorporating geometric
nonlinearities,initial geometric imperfections,anisotropyof the in-
dividual face sheets, and transverse shear effects in the core layer
are displayedonly to the extent that they are needed in the treatment
of the subject considered in this paper.

Basic Assumptions and Conventions
The global middle plane of the structure r , selected to coincide

with thatof thecore layer, is referredto an curvilinearandorthogonal
coordinate system x a , where a =1, 2. The through-the-thickness
coordinate x3 is consideredpositive when measured in the direction
of the inward normal. Consistent with the convention given in the
Nomenclature, the uniform thickness of the core is 2h̄, whereas
those of the upper and bottom face sheets as h 0 0 and h 0 , respectively.
As a result, H ( ´ 2h̄ + h 0 + h 0 0 ) is the total thicknessof the structure
(Fig. 1).

Toward developing the geometrically nonlinear theory of sand-
wich � at panels, the following assumptions are adopted:

1) The face sheets are composed of a number of orthrotropic
material laminas, theaxesof orthrotropyof the individualpliesbeing
rotated with respect to the geometrical axes x a of the structure.

2) The material of the core features orthotropic properties, the
axes of orthotropy being parallel to the geometrical axes x a .

3) The core layer is capable of carrying transverse shear stresses
only, in which case we deal with a weak core.

4) A perfect bonding between the face sheets and the core and
between the constituent laminas of the face sheets is assumed to be
valid.

5) The assumption of incompressibility in the transverse normal
direction is adopted for both the core and face sheets.

6) The layers constituting the faces are assumed to be thin, and
as a result, transverse shear effects are neglected in the face sheets.

7) The structure as a whole, as well as both the top and bot-
tom laminated face sheets, is assumed to exhibit mechanical and

Fig. 1 Sandwich � at panel element.

geometrical symmetry propertieswith respect to both the midplane
of the core layer and about their own midplanes as well.

8) The geometrical nonlinearities are considered in the von
Kármán sense; this implies that the nonlinearities associated with
tangential displacements are small as compared with those associ-
ated with transversal de� ection.

Kinematics
Several basic kinematic relationshipsderivedin Refs. 8 and 9 will

be supplied.

Three-Dimensional Displacement Field in the Face Sheets and Core
In agreement with the stipulated assumptions, the transversedis-

placement should be uniform through the thickness of the laminate,
which implies

V 0
3(x1, x2, x3) =V 0 0

3(x1 , x2, x3) = V̄3(x1, x2, x3) ´ v3(x1 , x2) (1)

When the transversesheareffectsin the face sheetsarediscarded,the
three-dimensionaldistributionof thedisplacement� eld ful� lling the
kinematic continuity conditions at the interfaces between the core
and facings results as8,9

V 0
1 (x a , x3) = n 1(x a ) + g 1(x a ) ¡ (x3 ¡ a)

@v3(x a )

@x1

(2a)

V 0
2 (x a , x3) = n 2(x a ) + g 2(x a ) ¡ (x3 ¡ a)

@v3(x a )
@x2

(h̄ · x3 · h̄ + h 0 ) (2b)

V 0
3(x a , x3) = v3(x a ) (2c)

V̄1(x a , x3) = n 1(x a ) +
³

x3

h̄

´»
g 1(x a ) +

³
h

2

´
@v3(x a )

@x1

¼
(3a)

V̄2(x a , x3) = n 2(x a ) +
³

x3

h̄

´»
g 2(x a ) +

³
h

2

´
@v3(x a )

@x2

¼

( ¡ h̄ · x3 · h̄) (3b)

V̄3(x a , x3) = v3(x a ) (3c)

V 0 0
1(x a , x3) = n 1(x a ) ¡ g 1(x a ) ¡ (x3 + a)

@v3(x a )
@x1

(4a)

V 0 0
2 (x a , x3) = n 2(x2) ¡ g 2(x a ) ¡ (x3 + a)

@v3(x a )

@x2

( ¡ h̄ ¡ h 0 0 · x3 · ¡ h̄) (4b)

V 0 0
3 (x a , x3) = v3(x a ) (4c)

In these equations, Vi (x a , x3) are the three-dimensional displace-
ment components in the directions of the coordinates xi .

In addition,

n a = (
±
V 0

a +
±
V 0 0

a ) / 2 (4d)

g a = (
±
V 0

a ¡
±
V 0 0

a ) /2 (4e)

are the two-dimensional tangential modi� ed displacement mea-
sures,where

±
V 0

a and
±
V 0 0

a are the tangentialdisplacementsof thepoints
of the midplanesof the bottom and top face sheets, respectively.For
a symmetric sandwich panel, h 0 =h 0 0 ´ h de� ne the thicknessof the
bottom and top face sheets, whereas a 0 =a 0 0 =a( ´ h̄ + h / 2) are the
distancesbetween the global midplane of the structureand the mid-
planes of the bottom and top face sheets, respectively.Henceforth,
the Greek indiceshave the range1, 2, whereas the Latin indiceshave
the range1 through3, and unlessotherwisestated, the Einstein sum-
mation convention over the repeated indices is employed.
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Distribution of Strains Across the Thickness of the Sandwich Panel
It is assumed that the structure features a stress-free small ini-

tial geometric imperfection
±
V 3[ ´ ±

v3(x a )]. By the adoption of the
concept of small strains and moderately small rotations, referred to
as the von Kármán assumption,10 ¡ 12 the components of the three-
dimensionalLagrangian strain tensor ei j result as follows.

In the bottom face sheets,

0e11 = 0 e 11 + (x3 ¡ a 0 ) j 0
11 (5a)

0e22 = 0 e 22 + (x3 ¡ a 0 ) j 0
22 (h̄ · x3 · h̄ + h 0 ) (5b)

20 e12 = 0 c 12 + (x3 ¡ a 0 ) j 0
12 (5c)

In the core layer,

ē11 = ¯e 11 + x3 ¯j 11 (6a)

ē22 = ¯e 22 + x3 ¯j 22 ( ¡ h̄ · x3 · h̄) (6b)

2ē12 = ¯c 12 + x3 ¯j 12 (6c)

2ē13 = ¯c 13 (6d)

2ē23 = ¯c 23 (6e)

In the upper face sheets,

0 0e11 = 0 0 e 11 + (x3 + a 0 0 ) j 0 0
11 (7a)

0 0e22 = 0 0 e 22 + (x3 + a 0 0 ) j 0 0
22 ( ¡ h̄ ¡ h 0 0 · x3 · ¡ h̄) (7b)

20 0e12 = 0 0 c 12 + (x3 + a 0 0 ) j 0 0
12 (7c)

In these equations, e 11 , e 22, and e 12( ´ c 12 /2) and e 13( ´ c 13 / 2) and
e 23( ´ c 23 / 2) are the two-dimensional tangential and the transverse
shear strain measures, respectively. The expressions of the two-
dimensional strain measures in terms of the two-dimensional dis-
placement quantities are displayed in the Appendix. Note that
Eqs. (6a–6e) are applicablein general to strongcore sandwichstruc-
tures.For the weak core sandwichstructures,only Eqs. (6d) and (6e)
are relevant.

Governing Equations
The governing equations for the geometrically nonlinear theory

of sandwich � at panels are represented in terms of displacement
quantities.

In spite of the intricacy, this formulation is not subjected to any
restrictionrelatedto theanisotropyof the coreand facesor thenature
of the core (weak or strong).

As a preliminary step, the principle of virtual work is used to
derive the two-dimensional equations of equilibrium of the theory
of sandwich structures and the associatedboundary conditions.Ac-
cording to this principle,

d J = d (U ¡ W ) = 0 (8)

where U is the strain energy, W is the work done by surface trac-
tions and edge loads, and d is the variation operator. Incorporating
the effect of a temperature � eld, and assuming materials exhibiting
monoclinic symmetry in the face sheets, consistent with the model
of weak core sandwich structures, we have

d U =
1

2
d

Z

r

(Z h̄ + h̄ 0

h̄

(Q̂ 0
a b x q e 0

a b e 0
x q ¡ 2ˆk 0

a b T e 0
a b ) dx3

+
Z ¯¡ h

¡ h̄ ¡ h 0 0
(Q̂ 0 0

a b x q e 0 0
a b e 0 0

x q ¡ 2ˆk 0 0
a b T e 0 0

a b ) dx3

+
Z h̄

¡ h̄

Q̄ a 3x 3 ē a 3 ē x 3) dx3

)

d r (9)

whereas

d W =

Z

X s
˜
S i d Vi dX (10)

In these equations
˜
Si =

˜
Sij n j are the components of the stress

vector de� ned on that part X s of the external boundary X where
stresses are prescribed, Si j is the second Piola–Kirchhoff stress
tensor, ni are the components of the outward unit vector normal
to X , r is the undeformed midplane of the sandwich panel, and
T [ ´ T (x a , x3)] is the rise of the temperature above a stress-free
reference temperature To . In addition,10

Q̂ a b x q

³
´ Q a b x q ¡

Q a b 33 Q33 x q

Q3333

´
(11a)

ˆk a b

³
´ k a b ¡

Q a b 33

Q3333
k 33

´
(11b)

are the modi� ed elasticmoduli and thermalcompliancecoef� cients,
respectively. Within this study one assumes that Q i jmn and k i j are
temperature-independent elasticand thermalexpansioncoef� cients.
ReplacementofEqs. (9) and (10) andof (6–9) in Eq. (8), carryingout
the integrationwith respect to x3 , integratingby partswherever nec-
essary to relieve the virtualdisplacementsof any differentiation,and
invoking the arbitrary character of the variations d g 1 , d g 2 , d n 1, d n 2,
and d v3 throughout the entire domain of the plate by setting to zero
the coef� cients of these variations, one obtains the � ve equations
of equilibrium and the associatedboundary conditionsvalid for the
theory of weak core sandwich structures.

The equations of equilibrium are

d n 1: N11,1 + N12,2 = 0 (12a)

d n 2: N22,2 + N12,1 = 0 (12b)

d g 1: L11,1 + L12,2 ¡ N̄ 13 = 0 (12c)

d g 2: L22,2 + L12,1 ¡ N̄ 23 = 0 (12d)

d v3: N11(v3,11 + ±
v3,11) + 2N12(v3,12 + ±

v3,12)

+ N22(v3,22 + ±
v3,22) + (M11,11 + 2M12,12

+ M22,22) + a / h̄(N̄ 13,1 + N̄ 23,2) + q3 = 0 (12e)

In addition, the boundary conditions that result are

Nnn =
˜
N nn or n n =

˜
n n (13a)

Nnt =
˜
N nt or n t =

˜
n t (13b)

Lnn =
˜
Lnn or g n =

˜
g n,

X

n, t

.
(13c)

Lnt =
˜
Lnt or g t =

˜
g t (13d)

Mnn =
˜
M nn or v3,n =

˜
v3,n (13e)

Nnt (v3,t + ±
v3,t ) + Nnn(v3,n + ±

v3,n) + Mnn ,n + 2Mnt ,t

+ (a / h̄)N̄ n3 =
˜
Mnt, t + ¯

˜
N n3 or v3 =

˜
v3 (13f)

where the subscripts n and t are used to designate the normal and
tangential in-plane directions to an edge and, hence, n =1 when
t =2, and vice versa. In addition, the sign

X

n,t

.

indicates that no summation over the indices n and t is implied.
The earlier displayed equations of equilibrium and static boundary
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conditions are expressed in terms of the global stress resultants and
stress couples as

N11 = N 0
11 + N 0 0

11 (1 , 2) (14a)

N12 = N 0
12 + N 0 0

12 (14b)

L11 = h̄(N 0
11 ¡ N 0 0

11) (1 , 2) (14c)

L12 = h̄(N 0
12 ¡ N 0 0

12) (14d)

M11 = M 0
11 + M 0 0

11 (1 , 2) (14e)

M12 = M 0
12 + M 0 0

12 (14f)

where (N 0
a b , M 0

a b ), (N 0 0
a b ), and N̄ a 3 are the stressresultantsand stress

couples associated with the lower and upper face sheets and with
the core layer, respectively.These quantities are de� ned as

{N 0
a b , M 0

a b } =
NX

k = 1

Z (x3 )k

(x3)k ¡ 1

(S 0
a b )k {1, x3 ¡ a}dx3 (15a)

N̄ a 3 =

Z h̄

¡ h̄

S̄ a 3 dx3 ( a , b = 1, 2) (15b)

The sign (1 , 2) indicates that, from the equations accompanied
by this sign, companion equations, not explicitly displayed, can be
obtained by replacing subscript 1 by 2, and vice versa. In addition,
N is the number of layers in the bottom face sheets equal to that in
the top faces, whereas (x3)k and (x3)k ¡ 1 are the distances from the
global midplane of structure to the upper and lower interfacesof the
kth layer, respectively.

Following usual procedure, replacement in the equationsof equi-
librium of stress resultants and stress couples expressed in terms of
displacement quantities g 1 , g 2 , n 1, n 2, and v3 yields the governing
equations expressed in terms of these quantities.

The resulting governing equation system is of 12th-order and,
consistentwith this order, 6 boundaryconditionsmust be prescribed
at each panel edge. Because of their intricacy, the governing equa-
tions are not displayed here. For a version of these equations, the
reader is referred to Ref. 12.

Postbuckling Equations
One of the goals of this paper is to highlight the powerful role

the directionality property and layup of the face-sheet composite
materialscan play toward enhancingthe bucklingstrengthand post-
buckling response behavior.

Two types of simply supported boundary conditions, type A and
type B, are considered. Type A implies that the panel edges are
simply supported and freely movable in the tangential directions
to the panel midplane, normal to the panel edge. For this case the
boundary conditions along the edges xn =0, Ln , are given by

Nnn = ¡
˜
N nn (16a)

Nnt = 0 (16b)

g n = 0 (16c)

g t = 0 (16d)

Mnn = 0 (16e)

v3 = 0 (16f)

Type B implies that all of the edges are simply supportedand that
the unloadededges are immovable in the tangentialplane, normal to

panel edges. The boundary conditions associated with the immov-
able edges xn =0, Ln are

n n = 0 (17a)

Nnt = 0 (17b)

g n = 0 (17c)

g t = 0 (17d)

Mnn = 0 (17e)

v3 = 0 (17f)

Condition (17a) is ful� lled in an average sense as

Z Ln

o

Z L t

o

³
@n n

@xn

´
dxn dxt = 0,

X

n, t

.
(18)

wherefrom following the procedure described in Refs. 10, 13, and
14, the � ctitious edge load

˜
N nn rendering the edges xn =0, Ln im-

movable is obtained.
The boundary conditions (16a), (16b), and (17b) are ful� lled in

an average sense as

Z L t

o

Nnn dxt = ¡
˜
N nnLn (19a)

³
n = 1, 2

t = 2, 1

´ X

n ,t

.

Z L t

o

Nnt dxt = 0 (19b)

where
˜
N nn are the compressive edge loads acting on the edges

xn =0, Ln . Recall that in these equations n and t are the directions
normal and tangential to an edge, respectively.

The transverse de� ection ful� lling the kinematic boundary con-
ditions in the transverse direction and the initial geometric imper-
fection yielding, in addition, the most severe postbucklingresponse
are15,16

»
v3(x1 , x2)
±
v3(x1, x2)

¼
=

»
w pq
±
w pq

¼
sin k p x1 sin l q x2 (20)

where k p = p p / L1, l q = q p / L2 , w pq and
±
w pq are the modal

amplitudes, and L1 and L2 are the edge lengths of the panel.
The variationof the temperature � eld through the panel thickness

is

T (x1, x2, x3) = x3
1
T (x1, x2) (21a)

where

1
T (x1, x2) = (Tb ¡ Tu ) / H (21b)

Tu [ ´ Tu (x1, x2)] and Tb[ ´ Tb(x1, x2)] are the temperature distribu-
tions at the surfaces x3 = ¡ H / 2 and x3 = H / 2, respectively.Such a
representation of the temperature � eld is appropriate, for example,
in the conditions occurring during the accelerated � ight of a high-
speedspacevehicle. The temperature

1
T and the distributed lateral

load q3 are expressed as

(
1
T (x1, x2)

q3(x1 , x2)

)
=

(
1
T pq

qpq

)
sin k px1 sin l q x2 ( p, q = 1, 2, . . .)

(22)

where
1
T pq and qpq are the temperature and lateral pressure ampli-

tudesof modes (p,q) in the developmentsof
1
T and q3, respectively.
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Table 1 Material properties for the face sheets

Type Material E1, Msi E2, Msi G12 , Msi m 12 a 1 , in./in./±F a 2, in./in./±F

F1 HS graphite epoxy 26.25 1.5 1.05 0.28 6.3 £ 10 ¡ 6 20.5 £ 10 ¡ 6

F2 IM7/977-2 11.6 10.9 1.4 0.06 0.9 £ 10 ¡ 6 0.93 £ 10 ¡ 6

F3 SCS-6/Ti-15-3 27.72 18.09 8.15 0.30 —— ——
F4 IM7 K3BR-4 22.0 1.2 0.6 0.30 —— ——
F5 CFRP 33.22 1.936 0.761 0.32 —— ——

Table 2 Material properties for the core

Type Core type, honeycomb Ḡ13 , Msi Ḡ23 , Msi

C1 Titanium 0.20835 0.09435
C2 Aluminum 0.021177 0.0131121
C3 Aluminum 0.014200 0.008600

Using the preceding representations of v3(x1, x2),
±
v3(x1, x2),

and
1
T (x1 , x2), one can obtain the displacementfunctions n 1 , n 2 , g 1,

and g 2 . Their expressions are not displayed here.
Following the procedure used in Refs. 12–14, based on the ex-

tended Galerkin method, a nonlinear algebraic equation governing
the postbuckling response is obtained and is expressed as

P1[w pq ,
±w pq ,

˜
N 11, ˜

N 22] + P2

£
w 2

pq , w pq ,
±w pq

¤

+ P3

£
w3

pq , w 2
pq , w pq ,

±
w pq

¤
+ Q1

1
T pq + Q2qpq = 0 (23)

where P1 , P2, and P3 are linear, quadratic, and cubic polynomials
of the unknown modal amplitudesw pq at the center of the panel and
Q1 and Q2 are coef� cients containing all of the data related to the
geometry and thermomechanical properties of the sandwich struc-
ture. Because of their intricacy, these coef� cients are not displayed
here.

The relationship between the average applied compressive edge
load and the average end shortening for predetermined temperature
conditions is

D 1 =
¡ 1

(L1 L2)

Z L1

o

Z L2

o

n 1,1 dx1 dx2 (24)

where D 1 is the dimensionless average end shortening in the x1

direction.
The linearizedcounterpartof Eq. (23) results in a standardeigen-

valueproblemfor the compressiveedge loadswhose solutionyields
the buckling load.

Numerical Simulations and Discussion
The displayed numerical results have the goal of highlighting the

in� uenceplayedby a numberof effectson the bucklingstrengthand
the nonlinear response.These are supplied in both the International
and U.S. Customary systems of units. The following materials with
their thermomechanical characteristicsand designations,displayed
in Tables 1 and 2, were used to generate the results.

Effect of Panel Face Thickness on Compressive Buckling Strength
and Results Comparisons

The effect of the thickness of each face sheet considered in con-
junctionwith the distancea between themidplaneof the coreand the
midplane of facings on the uniaxial compressive buckling strength
is shown in Figs. 2 and 3. The top and bottom faces of the panel are
constituted of three plies each, in the sequence [45/ ¡ 45/ 45 deg].
L1 =L2 =9 in. The face sheets and the core are made up from ma-
terial F5 and C2, respectively(see Tables1 and 2). Whereas in Fig. 2
all four edges are assumed to be movable, in Fig. 3 the two unloaded
edges are considered to be immovable. In both cases, the results re-
veal that, with an increase of both the panel face thickness and of
the parameter a, a continuous increase of the buckling strength is
experienced. In the case of the immovability of the unloaded edges,
a dramatic decrease of the buckling strength as compared to that
of the panel counterpart featuring movable edges is experienced.
Similar results to those in Fig. 2 have been provided by Pearce and

Fig. 2 Dependence of the uniaxial buckling load vs face thickness for
selected values of the distance between the local midplane of the upper/
lower face sheets and the midplane of the core.

Fig. 3 CounterpartofFig.2 for thecase where theunloadededges (x2 =
0, L2) are immovable.

Webber.2 Several approximatedata points extracted from their ana-
lytical results(� lled squares in Fig. 2) and plottedagainst the present
ones reveal close agreement.

Effect on Buckling Strength of Fiber Orientation, in Conjunction
with Panel Aspect Ratio

The variation of the buckling load vs ply angle for a � at sand-
wich panel characterized by selected values of its aspect ratio
w ( ´ L2 / L1) is displayed in Fig. 4. Similar to the case consid-
ered in Ref. 7, the panel consists of a titaniumhoneycombcore (C1)
and laminated angle-ply face sheets, each one made up from four
laminas of material F3, in the sequence [h / ¡ h / ¡ h / h ]. All edges
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Table 3 Maxima for the buckling loads and the associated ply angles for different layups of face sheets

w a

Layup 0.9 1 1.2 1.4 1.6

( h ) (11.5339)[48.6] (9.3289)[45] (6.8129)[37] (5.567)[30.6] (5.0144)[16.2]
( h / ¡ h / h ) (11.8650)[47] (9.5590)[44.1] (6.9455)[38.6] (5.6496)[31.5] (5.0483)[19.8]
( h / ¡ h / h / ¡ h / h ) (11.894)[47.7] (9.577)[45] (6.9558)[38.7] (5.6560)[31.5] (5.0511)[19.8]
aSequence ( )[ ] ´ (N11 £ 103)[h deg] indicates the maximum buckling load (lb/in.) and the associated ply angle corresponding
to the indicated layup and panel aspect ratio.

Fig. 4 In� uence of the � ber orientation in the face sheets on the uni-
axial buckling strength of a � at sandwich panel.

Fig. 5 In� uence of the � ber orientation in the face sheets on the uni-
axial compressive buckling strength of a sandwich panel.

are movable (L1 =24 in., h f =0.032 in., and hc =0.584 in.). Sev-
eral data points extracted from the results of Ref. 7 (� lled squares
in Fig. 4) are plotted against the present ones, and they show a very
close agreement. The results of Fig. 4 reveal a very low sensitivity
of the buckling load to the variation of the � ber orientation in the
face sheets. This trend is attributed to the very low orthotropicity
ratio of the material used for the face sheets.

The results from Fig. 4 also reveal that for a panel of aspect
ratio w =0.9, the peak buckling load occurs approximatelyat a ply
angle of h =50 deg, whereas for a panel of aspect ratio w =1, the
peak buckling load appears to occur approximatelyat a ply angle of
h =45 deg. Furthermore, one can conclude that as the panel aspect
ratio w increases, the angle ply at which the peak buckling load
occurs is shifted toward lower ply-angles.

In Figs. 5 and 6 the variation of the buckling load as a functionof
ply angle for a sandwich panel of various aspect ratios is shown. In
both cases the panel consists of an aluminum honeycomb core (C1)

Fig. 6 Counterpart of Fig. 5.

and facings made up from HS graphite epoxy (F1). As is readily
seen, the selected material of the face sheets is characterized by a
rather large orthotropicity ratio. Each face of the sandwich panel
considered in Fig. 5 is made up from one layer, in contrast to the
panel in Fig. 6, for which each face consists of three plies in the
sequence [h / ¡ h / h ]. In Fig. 5, all four edges are movable. It is also
assumed that in both cases the thickness of face sheets remains un-
changed (L1 =24 in., h f =0.02 in., and hc =0.5 in.). From Figs. 5
and 6, it becomes evident that for any consideredpanel aspect ratio,
an increase of the number of layers in each face, without the in-
crease of their thickness, is accompaniedby a slight increase of the
buckling strength. This trend becomes more evident from Table 3,
where the � rst two considered sandwich panels are identical with
those described in Figs. 5 and 6, whereas the third one, has the
top and bottom face sheets made up of � ve layers in the sequence
[h / ¡ h / h / ¡ h / h ]. For all of these three consideredpanels, the thick-
ness of face sheets is the same. The results shown in Figs. 5 and 6
also reveal that for aspect ratios w ·1, the bucklingstrengthis more
sensitive to the variation of ply angle than for panels of aspect ratio
w > 1. In addition, from both Figs. 5 and 6 and Table 3, it becomes
apparent that with the increaseof the panel aspect ratio, both a decay
of the maximum buckling strength and a shift of the corresponding
ply angle toward smaller angles are experienced.

Notice that in Figs. 5 and 6, for any w ·1.2, the minimum buck-
ling load prior to the � rst discontinuitieshave been determined for
m =n =1, whereas the remaining parts of the curves have been
determined for m =2, n =1. However, for w > 1.2, there are no
changes in the mode number for the minimum buckling load, that
is, in this case this condition is obtained throughout for m =n =1.

In Fig. 7, the case of sandwich panels whose face sheets are
made up from three layers arranged in the sequence [h / ¡ h / h ] was
considered.For this case, it was assumed that the thickness of each
constitutentply is h p =0.02 in. With the exception that in this case
the face sheets are three times thicker than in Fig. 6, the remaining
mechanical and geometrical characteristicsare identical.

The comparison of the results from Figs. 6 and 7 reveal that
the increase in the thickness of face sheets results in a tremendous
increaseof the bucklingstrength.In addition, as compared to Fig. 6,
Fig. 7 reveals that, besides the signi� cant bene� cial effect on the
bucklingstrengthresultingfrom the increasein face-sheetthickness,
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Fig. 7 Counterpart of Fig. 6, where each of the face sheets is three
times thicker than in Fig. 6.

Fig. 8 Uniaxial buckling load vs panel aspect ratio for a � at sandwich
panel.

no notable differences regarding implications of the aspect ratio
coupled with that of the ply angle, as well as of the mode number
rendering the minimum buckling load, can be reported.

Effect on Buckling Strength of Panel Aspect Ratio, in Conjunction
with Selected Layups

In Fig. 8, the variation of the buckling load as a function of the
panel aspect ratio is presented. In Fig. 8, L1 =24 in., h f =0.025 in,
and hc =0.5 in. and the materials are F2 and C1. All edgesare freely
movable. The panel is considered to be uniaxially compressed, and
each face sheet is made up of � ve laminae in three different layups.
In all of these cases, a strong decrease of the buckling strength
as a result of the increase in the panel aspect ratio is experienced.
The [90/ ¡ 90/ 90/ ¡ 90/ 90 deg] layup appears to exhibit the lowest
buckling strength up to an aspect ratio w =2.4, beyond which the
[45/ ¡ 45/ 45/ ¡ 45/ 45 deg] layup exhibits the lowest buckling load.
This latter layup also exhibits the largest buckling strength of the
three layups, up to an aspect ratio of w »=2.4. For aspect ratios
greater than w »= 2.4, the [0/0/0/ 0/ 0] layup yields the largest
buckling strength.

Figure 9 represents the counterpartof Fig. 8 in the sense that, for
this case, the unloaded edges are considered to be immovable. The
buckling loads appear to occur at smaller values than for the case
of all four edges being movable. This difference appears to be more
pronouncedat smaller aspect ratios, as opposed to the larger aspect
ratios. The decay of the buckling strength for panels featuring im-
movableedges is attributedto the buildupof compressivestresses in
the unloaded direction. A similar trend emerges also when compar-
ing the results in Fig. 3 with their counterpart obtained for a panel

Fig. 9 Counterpart of Fig. 8 for the case of two immovable unloaded
edges.

Fig. 10 In� uence of � ber orientation in the face sheets considered in
conjunction with that of the aspect ratio on the uniaxial compressive
buckling of a sandwich panel.

featuring movable edges, Fig. 2. In addition, the [0/0/ 0/ 0/0] and
[90/ ¡ 90/ 90/ ¡ 90/ 90 deg] layups relative to one another reveal the
same trend of variation as in the case of all four edges being mov-
able. In contrast to the case of all four edges being movable, in this
case the [45/ ¡ 45/ 45/ ¡ 45/ 45 deg] layup features the least buck-
ling strength of the three layups, up to the aspect ratio panel w »=1,
beyond which this layup exhibits the largest buckling load capacity
to an aspect ratio of w »=1.75. Finally, from an aspect ratio panel
w »=2.1, this layup features the lowest buckling strength.

Effect on Buckling Strength of Transverse Shear Properties
of the Core

Figures 10 and 11 show the uniaxial buckling response for a
sandwich panel whose face sheets are constitutedeach of four plies
in the sequence [h / ¡ h / ¡ h / h ]. In Figs. 10 and 11, L1 =24 in.,
h f =0.08 in., and hc =0.5 in. All edges are freely movable. The
only differenceconsists of the mechanical constants for the core. In
Fig. 10 the core is made up from material C3, and in Fig. 11 from
material C1. The results allow to infer the implicationsof transverse
shear stiffnesscharacteristicsof the core on the bucklingstrengthof
uniaxially compressed sandwich panel. The results reveal the pow-
erful role played by transverseshear stiffness characteristics,whose
increase is associated with a signi� cant increase of the buckling
strength. In addition, as the results of Fig. 11 compared with those
of Fig. 10 reveal, an increaseof the ratio of the core transverseshear
moduli Ḡ13 / Ḡ23 tendsto shift the occurrenceof themaximumbuck-
ling load toward larger ply angles and also to yield larger variations
of the buckling loads vs the ply angle as compared to the case of
lower ratios of transverse shear moduli.
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Fig. 11 Counterpartof Fig. 10 for the case of the core madeof material
C1.

Fig. 12 Load-de� ection amplitude interaction for a uniaxially com-
pressed � at sandwich panel, whose face sheets are made up each from
one layer.

Postbuckling Response of Sandwich Panels
The effect of the ply angle of the material of the face sheetson the

edge load-center de� ection interaction of a uniaxially compressed
sandwich panel is shown in Fig. 12. Herein the top and bottom
face sheets are made up of a single layer, each of the material F1.
L1 =L2 =24 in., h f =0.02 in., and hc =0.5 in. All edges are freely
movable.

The results reveal that the buckling bifurcation loads identi� ed
by the � lled circles on the ordinate increase to ply angle of 45 deg,
after which, as the ply-anglesincreases,the bucklingload decreases.
A similar trend can be seen in the deep postbuckling range, where
as the ply angles increase, the load-carrying capacity of the panel
decreases. For the Fig. 12 case, a titanium honeycomb core (C1),
which exhibits the largest transverse shear moduli among the mate-
rials from Table 2, was considered.

In Fig. 13 the aluminum honeycomb(C3) characterizedby much
lower transverse shear stiffness characteristics is used for the core,
and the considered thickness of face sheets is more than double that
in Fig. 12. The results shown in Fig. 13 reveal that the two effects
that are contradictory in nature, namely, increase of thickness of
face sheets, on one hand, and decrease of transverse shear moduli
of the core, on the other hand, compensateeach other, so that � nally
the buckling strength and load-carrying capacity in the postbuck-
ling range remain roughly unchanged. However, because the ratio
Ḡ13 / Ḡ23 is lower in the lattercase,a more reducedsensitivityof both

Fig. 13 Counterpart of Fig. 12 for the case of the core made of the
material C3, with top and bottom face sheets of thickness hf = 0.05 in.

Fig. 14 Counterpart of Fig. 12, for the case of face sheets constituted
each of three layers whose total thickness is equal with that in Fig. 12.

the buckling strength and load-carrying capacity in the postbuck-
ling range to the variationof the ply angle is experienced.Moreover,
consistentwith what was remarked when the results of Fig. 11 were
comparedwith those of Fig. 10, in this case the decreaseof the ratio
Ḡ13 / Ḡ23 results in a shift of the bucklingloads toward lower ply an-
gles and less sensitivity of the buckling and load-carryingcapacity
to the ply angle variation.

InFig. 14, thepanelfeaturesthe samegeometricalandmechanical
characteristicsas in Fig. 12, excepting that each face is made up of
three layersin the sequence[h / ¡ h / h ]. In spiteof this, theirthickness
is the same as for one layer, that is, as in Fig. 12. The same type of
behavior can be seen in the deep postbuckling range but differs at
the bucklingbifurcation.It is revealedthat, at the smaller ply angles,
the buckling bifurcation as well as the load-bearing capacity are a
little larger as opposed to the trend appearing in Fig. 12.

The increaseof face-sheet thicknessyields a dramatic increaseof
both the buckling loads and load-carryingcapacity in the postbuck-
ling range. In contrast to Fig. 14, Fig. 15 shows the same conditions
and interactionsbut for a larger face-sheet thickness;now the thick-
ness of each of the face sheets is three times larger than that corre-
sponding to Fig. 14. In spite of this modi� cation, no change in the
behavioras comparedto that in Fig. 14 is emerging;as the ply angles
increase, in the deep postbuckling range the load-carryingcapacity
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Fig. 15 Counterpart of Fig. 14 for the case of face sheets made up from
three layers whose thickness is three times that in Fig. 14.

Fig. 16 Counterpart of Fig. 14 depicting the load–end-shortening de-
pendence.

of the panel decreases. The counterpart of Fig. 15 portraying the
load–end-shorteninginteraction is shown in Fig. 16. The results of
Fig. 16 reveal that, as the ply angle increases, the end shortening
increases as well. For � xed compressive edge loads, at lower ply
angles, much smaller end shortenings than at larger ply angles are
experienced.

Figure 17 representing the counterpartof Fig. 15, corresponds to
the case of panels featuring two immovableunloadededges.For this
case it is revealed that the buckling occurs at much lower compres-
sive loads for all consideredply-anglecon� gurations. In addition, it
is apparent that the maximum buckling bifurcationoccurs at the ply
angle h =30 deg, as opposed to h =45 deg, as seen earlier in the
case of all four edgesbeing movable.Moreover, in contradistinction
with the case of all edges being movable, in this case, at larger ply
angles, for example, h =60, 75, and 90 deg, the sensitivity of the
variation of buckling strength and load-carryingcapacity with that
of ply angle is almost nonexistent.

Figure 18 showing the load–end-shortening dependence repre-
sents the counterpart of Fig. 17. Figure 18 reveals that for a given
compressive edge load, at large ply angle, the end shortening is
larger than for smaller ply angles. In addition, it is also shown that,
in contrast to the case of all four edges being movable, in the case
of two immovable unloaded edges the buckling bifurcation occurs
at much smaller magnitudes of the end shortening.

Figure 19 shows the case of a � at sandwich panel whose top and
bottom face sheets are made up each from three (of the material F1)

Fig. 17 Counterpart of Fig. 15 for the case of the immovableunloaded
edges.

Fig. 18 Load–end-shortening interaction for the case considered in
Fig. 17.

Fig. 19 Postbuckling response of a sandwich panel under biaxial
compression/tension.
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Fig. 20 Nonlinear response of a sandwich geometrically imperfect � at
panel.

layers in the sequence [45/ ¡ 45/ 45 deg], whereas the core is of the
material C1. L1 = L2 =24 in., h f =0.02 in., and hc =0.5 in. All
edges are freely movable.The panel is consideredto be subjected to
the compressiveload

˜
N11 on theedgesx1 =0, L1 and to the compres-

sive/tensile loads
˜
N22 on the edges x2 =0, L2. As a result, the edge

load ratio L R( ´
˜
N22/

˜
N11) is L R > 0, L R =0, and L R < 0, depend-

ing on whether
˜
N22 > 0 (corresponding to compression),

˜
N22 =0, or

˜
N22 < 0 (corresponding to tension), respectively.One supposes that
the compressive load

˜
N11 increasesgradually.The results reveal that

a considerable increase of the buckling strength is achieved by ap-
plyingan increasedtensionon the edgesx2 =0, L2 . The samecan be
inferred about the postbuckling behavior. In contradistinctionwith
this case, when all of the edges are subjected to compressive loads,
a decrease of the buckling strength is experienced.

Effects of the Combined Compressive Edge Load and Temperature
In Fig. 20 one considers the case of � at sandwich panels whose

top and bottom faces are made up from three layers of equal
thickness in the sequence [h / 0/ h deg]. The material of the face
sheets is F1 and the core is C3. L1 = L2 =24 in., h f =0.01125 in.,
and hc =0.35 in. All edges are freely movable. The panel is ex-
posed to an antisymmetric temperature gradient through the panel
thickness, the temperature amplitude on the bottom plane, Tb , is
assumed to be positive. This implies that the temperature � eld
T (x1 , x2, x3) = x3(2/ H )Tb(x1, x2). It is assumed that the panel fea-
turesanupwardinitialgeometricimperfection,

±
w = ¡ 0.0875in. and

that the edges x1 =0, L1, are subjected to the compressive preload

˜
N11 =1850 lb/in. The results reveal that under these conditions, for
Tb = 0, the panel exhibits a negative (upward) initial de� ection.
With the increaseof Tb , the de� ection becomes gradually less nega-
tive; for a certain Tb , dependingon the ply angle, a limit temperature
is reached, which, by further increase of Tb , is followed by a snap-
through buckling. At the same time, the results reveal that for some
ply angles, for example h =30, 45, and 60 deg, the intensity of
the snap through can dramatically be attenuated and can even be
eliminated altogether, for example, for h =45 deg.

Conclusions
The resultspresentedconcernthe behaviorof sandwich� at panels

with anisotropic face sheets subjected to uni/biaxial edge loads and
an antisymmetric through panel wall-thickness temperature gradi-
ent. The material of each constituent lamina of the face sheets was
considered to feature anisotropic properties induced by the rota-
tion of the � bers in each constituent ply with respect to the axes
of the structure. With the generation of stiffness quantities A a 6 and
D a 6 , ( a = 1, 2), induced by this off-axis material con� guration, an
increase in the buckling strength and postbuckling is experienced,
The results indicate that the directionality property of facings can
play a tremendous role toward enhancing the buckling strength and

the load-carrying capacity in the postbuckling range. The implica-
tions of immovability of unloaded edges and of elastic characteris-
tics of materials of face sheets and of the core on the buckling and
postbuckling strength have also been highlighted, and their impor-
tant role in enhancing the buckling strength and the postbuckling
response behavior was emphasized.

Moreover, it was shown that in some complex loadingconditions,
when also � at sandwich panels can experience snap-throughbuck-
ling, a judicious use of the directional properties of the material of
face sheets can result in the attenuation of its intensity and even in
its elimination altogether.

Appendix: Strain-Displacement Relationships
Bottom face sheets:

0 e 11 = n 1,1 + g 1,1 + 1
2
v2

3,1 + v3,1
±
v3,1 (1

!
Ã 2)

0 c 12 = n 1,2 + n 2,1 + g 1,2 + g 2,1 + v3,1v3,2 + ±
v3,1v3,2 + v3,1

±
v3,2

0 j 11 = ¡ v3,11 (1
Ã! 2)

0 j 12 = ¡ 2v3,12

Core layer:

¯e 11 = n 1,1 + 1
2
v2

3,1 + ±
v3,1v3,1 (1

Ã! 2)

¯c 12 = n 1,2 + n 2,1 + v3,1v3,2 + ±v3,1v3,2 + v3,1
±v3,2

¯j 11 =
1
=
h

»
g 1,1 +

1

2
hv3,11

¼
(1

Ã! 2)

¯j 12 =
1
=
h

{g 1,2 + g 2,1 + hv3,12}

¯c 13 =
1
=
h

»
g 1 +

1
2

hv3,1

¼
+ v3,1 (1

Ã! 2)

Top face sheets:

0 0 e 11 = n 1,1 ¡ g 1,1 + 1
2 (v3,1)2 + ±

v3,1v3,1 (1
Ã! 2)

0 0 c 12 = n 1,2 + n 2,1 ¡ g 1,2 ¡ g 2,1 + v3,1v3,2 + ±
v3,1v3,2 + v3,1

±
v3,2

0 0 j 11 = ¡ v3,11 (1
Ã! 2)

0 0 j 12 = ¡ 2v3,12
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