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Effect of Face-Sheet Anisotropy on Buckling
and Postbuckling of Sandwich Plates
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A study of the effect of anisotropy of face sheets on buckling and postbuckling of sandwich flat panels subjected to
both mechanical and thermal loads is presented. The mechanical loads consist of uniaxial compressive/tensile edge
loads, while the temperature is assumed to exhibit an antisymmetric variation through the panel thickness. The
study is carried outin the context of a geometrically nonlinear theory of sandwich structures that also incorporates
the effect of unavoidable stress-free initial geometric imperfections. A detailed analysis of the influence of a large
number of parameters associated with the panel geometry, material properties of the core, fiber orientation and
stacking sequence in the face sheet, and character of tangential boundary conditions (i.e., movable or immovable)
on buckling strength and postbuckling response is accomplished, and pertinent conclusions are outlined.

Nomenclature

a = distance between the global midsurface
and the midsurface of facings

E,\ E, = in-plane Young’s moduli, Msi

e;j = three-dimensional strain tensor

G5, G153, G,3 = in-plane shear modulus of material of face
sheets; transverse shear moduli of the core, Msi

h,, h, h, H = thickness of each constitent ply of face-sheets,
thickness of the facings, thickness of the core,
and total thickness of the structure, respectively

L,L, = panel length and width, respectively

N = number of layers in the upper facings, equal
to that in the bottom facings

N5, Nos = transverse shear stress resultants associated
with the core

q3, g = transverse load and its modal amplitudes,
respectively

S;i = second Piola-Kirchhoff stress tensor

T (xy, x2, x3), = three-dimensional temperature field, thickness

71~( X1, Xa), 71~ b temperature distribution and its modal
amplitudes, respectively

T.(x1, x3), = temperature distributions on the top and bottom

Ty(xy, x5) faces of the sandwich panel, respectively

Vo, V3 = three-dimensional tangential and transversal

. displacement components

veve = tangential displacement components of points
of midplanes of the bottom and top face sheets,
respectively

V3, v 33 = deflection, initial geometric imperfection; their

Wonns v&m,, modal amplitudes, respectively

Xy X3 = tangential and thicknesswise coordinates,
respectively

A = end shortening in the x; direction

€ = two-dimensional strain measures

Aons Uy =mn/L,nx/L,, (m,n=1,2,...)
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Aaps Ao = thermal compliance expansion coefficients and
their modified counterparts, respectively

s Ma = two-dimensional tangential displacement
measures

"4 = panel aspectratio (=L,/L,)

Subscripts

)y (e = quantities associated with the face and core
layers, respectively

ON = 0(")/0x;

(D> (s = normal and tangential in-plane directions to an
edge, implying (n =1, =2) or (n =2,¢t =1)

) = prescribed quantity

Superscripts
(7, (9", () = quantities affiliated with the bottom face sheets,
upper face sheets, and core layer, respectively

Introduction

RENEWED interest in the use of sandwich structures in the

construction of advanced supersonichypersonic flight vehi-
cles and reusable space transportionsystems has been demonstrated
in the last decade. Some of the underlying reasons and motivation
for this interest are, among others, 1) the possibility to integrate
the advanced fiber-reinforcedcomposite materials in the face sheets
and the core, their use being likely to provide increased bending
stiffness with little resultant weight penalty, long fatigue life, and
directional properties, as well as the capability of operating in a
high-temperatureenvironment;2) the possibility to provide thermal
and sound insulation characteristics, as well as a smooth aerody-
namic surface, in a higher speed flow environment;and 3) extended
operational life as compared to stiffened-reinforced structures that
are weakened by the appearance of stress concentration. Needless
to say, the developmentof new manufacturing techniques that make
the use of sandwichstructureseconomicallyfeasiblehas contributed
heavily to the widespread use of such structures in the aerospace
industry.

As is well known, any combination of biaxial loading and exter-
nal pressure can be found in a typical aircraft structure. Moreover,
high-speed and launch vehicles are likely to be exposed during their
missions to severe temperature fields. In such a context, develop-
ment of a comprehensive structural model of sandwich flat panels
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and of adequate computational methodologiesable to address prob-
lems of determination of their buckling strength and load-bearing
capabilitiesin the nonlinear range represent issues of practical im-
portance in the design of such structures.

One of the goals of the paperis to developa rather comprehensive
theory of sandwich flat panels incorporating geometric nonlinear-
ities in the von Karmdn sense, the initial geometric imperfection,
and the directionality property of the materials of face sheet. In par-
ticular, the directional property of fibrous composites can be used to
enhance the buckling strength and the load-carrying capacity in
the nonlinear range. In spite of the available literature devoted to
the modeling and analysis of flat sandwich panels with laminated
face sheets (for example, see Ref. 1, which is the most recent and
comprehensivereview of the state of the art in the field of sandwich
structures), to the best of the authors’ knowledge, the problem of the
enhancement of the load-carrying capacity of flat sandwich panels
in both linear and nonlinearranges using the tailorability property of
laminated face sheets has not yet been addressed. For special cases
related to linear stability problems, a number of results can be found
in Refs. 2-7.

To be reasonably self-contained, in the following section, the
basic equations of sandwich plate theory incorporating geometric
nonlinearities,initial geometric imperfections, anisotropy of the in-
dividual face sheets, and transverse shear effects in the core layer
are displayedonly to the extent that they are needed in the treatment
of the subject considered in this paper.

Basic Assumptions and Conventions

The global middle plane of the structure o, selected to coincide
with thatof the corelayer, is referredto an curvilinearand orthogonal
coordinate system x,, where o =1, 2. The through-the-thicknes
coordinate x; is considered positive when measured in the direction
of the inward normal. Consistent with the convention given in the
Nomenclature, the uniform thickness of the core is 2k, whereas
those of the upper and bottom face sheets as 4" and /', respectively.
As aresult, H(=2h + i’ + h") is the total thickness of the structure
(Fig. 1).

Toward developing the geometrically nonlinear theory of sand-
wich flat panels, the following assumptions are adopted:

1) The face sheets are composed of a number of orthrotropic
material laminas, the axes of orthrotropy of the individualplies being
rotated with respect to the geometrical axes x,, of the structure.

2) The material of the core features orthotropic properties, the
axes of orthotropy being parallel to the geometrical axes x,.

3) The core layer is capable of carrying transverse shear stresses
only, in which case we deal with a weak core.

4) A perfect bonding between the face sheets and the core and
between the constituentlaminas of the face sheets is assumed to be
valid.

5) The assumption of incompressibilityin the transverse normal
direction is adopted for both the core and face sheets.

6) The layers constituting the faces are assumed to be thin, and
as a result, transverse shear effects are neglected in the face sheets.

7) The structure as a whole, as well as both the top and bot-
tom laminated face sheets, is assumed to exhibit mechanical and

Fig. 1 Sandwich flat panel element.

geometrical symmetry properties with respect to both the midplane
of the core layer and about their own midplanes as well.

8) The geometrical nonlinearities are considered in the von
Karman sense; this implies that the nonlinearities associated with
tangential displacements are small as compared with those associ-
ated with transversal deflection.

Kinematics

Several basic kinematicrelationshipsderivedin Refs. 8 and 9 will
be supplied.

Three-Dimensional Displacement Field in the Face Sheets and Core

In agreement with the stipulated assumptions, the transverse dis-
placement should be uniform through the thickness of the laminate,
which implies

V3/(x1, X5, X3) =V§/(x1, X5, X3) =\73(x1, X2, X3) = v3(xp, x) (1)

When the transversesheareffectsin the face sheetsare discarded, the
three-dimensionaldistributionof the displacementfield fulfilling the
kinematic continuity conditions at the interfaces between the core
and facings results as®*®

V3 (x,
V(s X3) =& (X,) + M(xg) — (X3 — @) ngf ) ()
1
! aV3(x(x)
Vz(x(x, X3) =& (xa) + m(xe) — (X3 — a)a_
X2

(h<xs<h+h) (2b)

V3/(x(x, x3) =v3(xa) (2¢)

_ h\o ”
V) (o X3) =& (Xg) + (%){m(m + (5)%)} (3a)

V(X X3) = E(xg) + (ﬁ){m(xa) n (ﬁ 8V3(xa)}
I’l 2 a)CZ
X

(=h <x;<h) (3b)
‘73()6(“ )C3) =V3(x(x) (30)
0v3(xq
V(o 23) = &) = M () = (x5 + ) ngf L)
1
" av3(x(x)
Vo (xa, x3) =&(X2) — Th(xe) — (x5 + a)a_
X2

(=h —h" <x3 <—h) (4b)
Vg/(xm x3) =v3(xq) (4¢)

In these equations, V;(x4, x3) are the three-dimensional displace-
ment components in the directions of the coordinates x;.
In addition,

& =V, +V/2 (4d)
e =(V!, =V"y/2 (4¢)

are the two-dimensjonal tangential modified displacement mea-
sures,where V'’ andV” are the tangential displacementsof the points
of the midplanes of the bottom and top face sheets, respectively. For
a symmetric sandwich panel, i’ =h" = h define the thickness of the
bottom and top face sheets, whereas @’ =a” =a(=h + h/2) are the
distances between the global midplane of the structure and the mid-
planes of the bottom and top face sheets, respectively. Henceforth,
the Greek indices have therange 1, 2, whereas the Latin indices have
therange 1 through 3, and unless otherwise stated, the Einstein sum-
mation convention over the repeated indices is employed.
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Distribution of Strains Across the Thickness of the Sandwich Panel

It is assumed that the structure features a stress-free small ini-
tial geometric imperfectionV;[=v;(x,)]. By the adoption of the
concept of small strains and moderately small rotations, referred to
as the von K4drmdn assumption,'®~12 the components of the three-
dimensional Lagrangian strain tensor ¢;; result as follows.

In the bottom face sheets,

ey =gy + (x5 —a)K|, (5a)
ey =g + (x5 —d)K, (h <x3 <h +h') (5b)

Zep ="y + (x5 —a)d, (5¢)

In the core layer,

e =& + x3ky, (6a)

8y =&y + X370, (—h <x; <h) (6b)
281, =71, + X3k, (6¢)

2813 =713 (6d)

28y = 73 (6e)

In the upper face sheets,
ey ="y + (x3 + a")K| (7a)

Teyy ="gyy + (x5 + a")K), (=h —h" <x; <-h) (7b)

ey ="y + (x5 + a"i, (7¢)

In these equations, &)1, €3, and €,(= 72/2) and &3(=y,3/2) and
£23(= ¥23/2) are the two-dimensional tangential and the transverse
shear strain measures, respectively. The expressions of the two-
dimensional strain measures in terms of the two-dimensional dis-
placement quantities are displayed in the Appendix. Note that
Eqgs. (6a-6e) are applicablein general to strong core sandwich struc-
tures. For the weak core sandwich structures,only Eqgs. (6d) and (6e)
are relevant.

Governing Equations

The governing equations for the geometrically nonlinear theory
of sandwich flat panels are represented in terms of displacement
quantities.

In spite of the intricacy, this formulation is not subjected to any
restrictionrelatedto the anisotropyof the core and faces or the nature
of the core (weak or strong).

As a preliminary step, the principle of virtual work is used to
derive the two-dimensional equations of equilibrium of the theory
of sandwich structures and the associated boundary conditions. Ac-
cording to this principle,

8] =8U - W) =0 (8)

where U is the strain energy, W is the work done by surface trac-
tions and edge loads, and ¢ is the variation operator. Incorporating
the effect of a temperature field, and assuming materials exhibiting
monoclinic symmetry in the face sheets, consistent with the model
of weak core sandwich structures, we have

1 h+ R ) A
U = 55/ _/;, (Q;ﬁwpe;ﬁe’wp - ZAine;ﬁ) dx;

-h

All /L 411 /1

+ /7 //( apopCapCop —ZAaﬁTeaﬁ)d)Q
~hi =

h
+/ 0 w3038a38e3) dxy ¢ do 9
i

whereas

W =/ S,8V, dQ (10)
Qs

In these equations §; =S;n; are the components of the stress
vector defined on that part €2 of the external boundary €2 where
stresses are prescribed, S;; is the second Piola-Kirchhoff stress
tensor, n; are the components of the outward unit vector normal
to €, o is the undeformed midplane of the sandwich panel, and
T[= T(x,, x3)] is the rise of the temperature above a stress-free
reference temperature 7,. In addition,!®

Qaﬁup (E Qa/}wp - Q(I,BQ333§333H’P_> (1 la)
Do (E g — 285 /133> (11b)
Q3333

are the modified elastic moduli and thermal compliance coefficients,
respectively. Within this study one assumes that Q;;,,, and A;; are
temperature-independent elasticand thermal expansioncoefficients.
Replacementof Egs. (9) and (10) and of (6-9) in Eq. (8), carrying out
the integration with respectto x3, integratingby parts wherever nec-
essary to relieve the virtual displacementsof any differentiation,and
invoking the arbitrary character of the variations on,, n,, 6&,, 8&,,
and 6v; throughoutthe entire domain of the plate by setting to zero
the coefficients of these variations, one obtains the five equations
of equilibrium and the associated boundary conditions valid for the
theory of weak core sandwich structures.
The equations of equilibrium are

8&1: Njjg + Nipp =0 (12a)
6&: Nyppy + Nipy =0 (12b)
Sm:Liy+ Ly, —Nyi3 =0 (12¢)
Sp: Lags + Lipy — Noy =0 (12d)

6v3: Nip(vain +va 1) + 2Np(vs 1 +v312)

+ Nop(v30 +v3n) + (M1 + 2My 1

+ M) +alh(Nysy + Nysp) + g3 =0 (12e)
In addition, the boundary conditions that result are
Nnn =Nnn or ":n =§n (133)
Ny =N, or & =§t (13b)
L., =L, or T =1 Z (13¢)

n,t

L, =L, or =1 (13d)
Mnn =Mnn or V3,n =Y3,n (136)

Nnt(vlt + ‘33,t) + Nnn(vln +‘33,n) + Mnn,n + 2Mnt,t
+(a/MN,y =M, + N,y or vy =1s (139

where the subscripts n and ¢ are used to designate the normal and
tangential in-plane directions to an edge and, hence, n =1 when
t =2, and vice versa. In addition, the sign

)

nt

indicates that no summation over the indices n and ¢ is implied.
The earlier displayed equations of equilibrium and static boundary
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conditions are expressed in terms of the global stress resultants and
stress couples as

Ny =N, + N, (1e2) (14a)
Ny, =N, + N, (14b)

Ly =h(N;, =N7) (12 (14c)
Ly, =h(Nj, = N,) (14d)

M, =M +M!, (1e2) (14e)
My =M, + M, (14

where (N/;, M{lﬁ), (N’;ﬁ), and N ,; are the stressresultantsand stress
couples associated with the lower and upper face sheets and with

the core layer, respectively. These quantities are defined as

N (x3)k
{N;,M;ﬁ}=2f (Sl xs —a}dxs  (150)

k=1Y(x3)k-1

h
Na3 =/ §a3 dxs3
—h

The sign (1<2) indicates that, from the equations accompanied
by this sign, companion equations, not explicitly displayed, can be
obtained by replacing subscript 1 by 2, and vice versa. In addition,
N is the number of layers in the bottom face sheets equal to that in
the top faces, whereas (x3), and (x;),_, are the distances from the
global midplane of structure to the upper and lower interfaces of the
kth layer, respectively.

Following usual procedure, replacementin the equations of equi-
librium of stress resultants and stress couples expressed in terms of
displacement quantities n;, 1, &, &, and v; yields the governing
equations expressed in terms of these quantities.

The resulting governing equation system is of 12th-order and,
consistentwith this order, 6 boundary conditions must be prescribed
at each panel edge. Because of their intricacy, the governing equa-
tions are not displayed here. For a version of these equations, the
reader is referred to Ref. 12.

(o, p=1,2) (15b)

Postbuckling Equations

One of the goals of this paper is to highlight the powerful role
the directionality property and layup of the face-sheet composite
materials can play toward enhancing the buckling strength and post-
buckling response behavior.

Two types of simply supported boundary conditions, type A and
type B, are considered. Type A implies that the panel edges are
simply supported and freely movable in the tangential directions
to the panel midplane, normal to the panel edge. For this case the
boundary conditions along the edges x, =0, L,, are given by

Nuw = =N (16a)
N, =0 (16b)
= (16¢)
n =0 (16d)
M,, =0 (16e)
vy =0 (161)

Type B implies that all of the edges are simply supported and that
the unloaded edges are immovable in the tangential plane, normal to

panel edges. The boundary conditions associated with the immov-
able edges x,, =0, L, are

& =0 (17a)
N, =0 (17b)
n, =0 (17¢)
n =0 (17d)
M,, =0 (17e)
vy =0 175

Condition (17a) is fulfilled in an average sense as

(e
— ) dx,dx, =0,
o o axn

wherefrom following the procedure described in Refs. 10, 13, and
14, the fictitious edge load N, rendering the edges x,, =0, L,, im-
movable is obtained.

The boundary conditions (16a), (16b), and (17b) are fulfilled in
an average sense as

Z (18)

nt

Lt
/ Nnn dxt = _NnnLn (193)

o

Ly
/ N, dx, =0 (19b)

where N, are the compressive edge loads acting on the edges
x, =0, L,. Recall that in these equations n and ¢ are the directions
normal and tangential to an edge, respectively.

The transverse deflection fulfilling the kinematic boundary con-
ditions in the transverse direction and the initial geometric imper-
fection yielding, in addition, the most severe postbucklingresponse
are!s:16

vy(xy, x w
{ 3 2)} ={ Opq}sin/lpxl sin 1, x, 20)

o
v3(xy, X2) W pg

where A, = pn/Ly, g, = qn/Ly, w,, and w,, are the modal
amplitudes, and L and L, are the edge lengths of the panel.
The variation of the temperature field through the panel thickness
is
1

T(x1, x2, X3) =x37(x1, x2) (21a)
where

1

T(xy,x,) =(T, —T,)/H (21b)
T,[=T,(x, x;)]and T, [ = T, (x,, x,)] are the temperature distribu-
tions at the surfaces x; =—H/2 and x; = H/2, respectively.Such a
representation of the temperature field is appropriate, for example,
in the conditions occurring during the accelerated flight of a high-

speedspacevehicle. The temperature7 and the distributed lateral
load g5 are expressed as

1 1
Tx,x) U _ )Ty, sinA,x; sin p1,x, (p,g =12,..)
q3(xy, x2) dpq

22)

1
whereT ,, and g, are the temperature and lateral pressure ampli-
tudesof modes (p,q) in the developmentsof 7 and g3, respectively.
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Table1 Material properties for the face sheets

Type Material E, Msi E,, Msi G2, Msi Vio ap,in./in./°F @, in./in./°F
F1 HS graphite epoxy 26.25 1.5 1.05 0.28 6.3 x107° 20.5 x107°
F2 IM7/977-2 11.6 109 1.4 006  0.9Xx107°  0.93x107°
F3 SCS-6/Ti-15-3 27.72 18.09 8.15 0.30 S S
F4 IM7 K3BR-4 22.0 1.2 0.6 0.30 e _
F5 CFRP 33.22 1.936 0.761 0.32 e _
Table2 Material properties for the core 16000 . . - 2801.92
W Approximate data points taken from Pearce and webber[76]
Type Core type, honeycomb G13, Msi G, Msi 14000 | [467-45°145° afin (mm)}=05 (127 - 2451.68
C1 Titanium 0.20835 0.09435
C2 Aluminum 0.021177 0.0131121 5 1200 B e
C3 Aluminum 0.014200 0.008600 3 E
= 10000 4175120 Z
z:-‘ )
Using, the preceding representations of vs(x;, X), V3(xy, X2), § 8000 0376 | 140096 5
and T'(x, x,),onecanobtainthe displacementfunctionsé&,, &, ny, o ) | -
and 1. Their expressions are not displayed here. E 6000 105072 £
Following the procedure used in Refs. 12-14, based on the ex- @ é
tended Galerkin method, a nonlinear algebraic equation governing 4000 7| 70048
the postbuckling response is obtained and is expressed as
2000 01 (254 - 350.24
R o1 4 (2.
Pl[wpqa pq’NllaN22]+P2[ ,,q,qu, qu] = 1o.00

o 1
+ P*[ pq’WJZJq’ Wpqs qu] + O Ty + 0rqy =0 (23)

where P;, P,, and P; are linear, quadratic, and cubic polynomials
of the unknown modal amplitudesw ,, at the center of the panel and
Q; and 0O, are coefficients containing all of the data related to the
geometry and thermomechanical properties of the sandwich struc-
ture. Because of their intricacy, these coefficients are not displayed
here.

The relationship between the average applied compressive edge
load and the average end shortening for predetermined temperature

conditions is
1 (L LZ) / / L1 2 ( )

where A is the dimensionless average end shortening in the x;
direction.

The linearized counterpartof Eq. (23) results in a standard eigen-
value problem for the compressiveedge loads whose solutionyields
the buckling load.

Numerical Simulations and Discussion
The displayed numerical results have the goal of highlighting the
influence played by a number of effects on the buckling strength and
the nonlinear response. These are supplied in both the International
and U.S. Customary systems of units. The following materials with
their thermomechanical characteristicsand designations, displayed
in Tables 1 and 2, were used to generate the results.

Effect of Panel Face Thickness on Compressive Buckling Strength
and Results Comparisons

The effect of the thickness of each face sheet considered in con-
junction with the distance a between the midplane of the core and the
midplane of facings on the uniaxial compressive buckling strength
is shown in Figs. 2 and 3. The top and bottom faces of the panel are
constituted of three plies each, in the sequence [45/—45/45 deg].
L, =L, =9 in. The face sheets and the core are made up from ma-
terial F5 and C2, respectively (see Tables 1 and 2). Whereasin Fig. 2
all four edges are assumed to be movable, in Fig. 3 the two unloaded
edges are considered to be immovable. In both cases, the results re-
veal that, with an increase of both the panel face thickness and of
the parameter a, a continuous increase of the buckling strength is
experienced. In the case of the immovability of the unloaded edges,
a dramatic decrease of the buckling strength as compared to that
of the panel counterpart featuring movable edges is experienced.
Similar results to those in Fig. 2 have been provided by Pearce and

o i " )
0.002 0.003 0.004 0.005 0.006 0.007 0.008
Panel Face Thickness, h (in)

1 1 I ]
0.0 0.10 0.15 0.20

Panel Face Thickness, h{imm)

Fig. 2 Dependence of the uniaxial buckling load vs face thickness for
selected values of the distance between the local midplane of the upper/
lower face sheets and the midplane of the core.

10000 +1751.20
[45°/-45°145%]
a {in (mm)}= 0.5 (12.7)
8000 - 4 1400.96
|
E Z
T 6000 105072
Z‘l !
< .
8 3
- s
2 400 0.3 (7.62) {70048 @
g %
a 5
1]
2000 02 (5.08) - 350.24
0.1(2.54)
R
- 0.00

0 ,
0.002 0.003 0.004 0.005 0.006 0.007 0.008
Panel Face Thickness, h (in)}

L L 1 1

0.05 0.10 0.15 0.20
Panel Face Thickness, h {mm)

Fig. 3 CounterpartofFig.2 for the case where the unloaded edges (x; =
0, L,) are immovable.

Webber.? Several approximate data points extracted from their ana-
lytical results (filled squaresin Fig. 2) and plotted against the present
ones reveal close agreement.

Effect on Buckling Strength of Fiber Orientation, in Conjunction
with Panel Aspect Ratio

The variation of the buckling load vs ply angle for a flat sand-
wich panel characterized by selected values of its aspect ratio
w(= L,/L,) is displayed in Fig. 4. Similar to the case consid-
ered in Ref. 7, the panel consists of a titanium honeycomb core (C1)
and laminated angle-ply face sheets, each one made up from four
laminas of material F3, in the sequence [0/ —60/—06/0]. All edges
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Table 3 Maxima for the buckling loads and the associated ply angles for different layups of face sheets

a

%
Layup 0.9 1 1.2 1.4 1.6
©)] (11.5339)[48.6] (9.3289)[45] (6.8129)[37] (5.567)[30.6] (5.0144)[16.2]

(0/-6/0)
(6/—-06/06/-06/06)

(11.8650)[47]

(11.894)[47.7] (9.577)[45]

(9.5590)[44.1]

(5.0483)[19.8]
(5.051D[19.8]

(6.9455)[38.6]
(6.9558)[38.7]

(5.6496)[31.5]
(5.6560)[31.5]

*Sequence Oll= (V1 x 103)[9 deg] indicates the maximum buckling load (Ib/in.) and the associated ply angle corresponding

to the indicated layup and panel aspect ratio.

[0/-0/-6/6]
45 |- - 7.88

35 —16.12

30 | - 6.25

F
Il
-
w
<
Buckiing Load, Ny, x 10° (N/mm)

Buckling Load, N, x 10° (Ibfin)
» - -]
! > ! ! ‘
P
L Il
° = =
a3 & &
Buckling Load, N,, x 10° (N/mm)

259

20 W 4350
:‘NA
L .8 o

15 %_a 262

10} {47

Buckling Load, N,,x 10 (ib/in)

5} - 0.87
® Approximate data points taken from Ko and Jackson{41}

0 1 ] ] 1 I ) 0.00
0 15 30 45 60 75 90

Ply Angle, 6 (Deg.)

Fig. 4 Influence of the fiber orientation in the face sheets on the uni-
axial buckling strength of a flat sandwich panel.

12 <210

10 {175
£ £
3 E
o 8 4140 2
e T
NF x
2 sp {105 Z
g 3
-d o
]
gl o
£ 4t y=os{070 E
Q -
a 10 ;:;

1.2
2| 13 Joss
1.6
(0]
0 1 ! I I 1 1 Jo.00
0 15 30 45 60 75 90

Ply Angle, 6 (Deg.)

Fig. 5 Influence of the fiber orientation in the face sheets on the uni-
axial compressive buckling strength of a sandwich panel.

are movable (L, =24 in., h; =0.032in., and &, =0.584 in.). Sev-
eral data points extracted from the results of Ref. 7 (filled squares
in Fig. 4) are plotted against the present ones, and they show a very
close agreement. The results of Fig. 4 reveal a very low sensitivity
of the buckling load to the variation of the fiber orientation in the
face sheets. This trend is attributed to the very low orthotropicity
ratio of the material used for the face sheets.

The results from Fig. 4 also reveal that for a panel of aspect
ratio y =0.9, the peak buckling load occurs approximately at a ply
angle of 0 =50 deg, whereas for a panel of aspect ratio y =1, the
peak bucklingload appears to occur approximately at a ply angle of
0 =45 deg. Furthermore, one can conclude that as the panel aspect
ratio y increases, the angle ply at which the peak buckling load
occurs is shifted toward lower ply-angles.

In Figs. 5 and 6 the variation of the bucklingload as a function of
ply angle for a sandwich panel of various aspectratios is shown. In
both cases the panel consists of an aluminum honeycomb core (C1)

y=09"]9
2 12 Jos3s
[6/-6/6] 16
0 1 Il | Il | J 10.00
0 15 30 45 60 75 90

Ply Angie, 0 (Deg.)

Fig. 6 Counterpart of Fig. 5.

and facings made up from HS graphite epoxy (F1). As is readily
seen, the selected material of the face sheets is characterized by a
rather large orthotropicity ratio. Each face of the sandwich panel
considered in Fig. 5 is made up from one layer, in contrast to the
panel in Fig. 6, for which each face consists of three plies in the
sequence [0/ — 6/ 6]. In Fig. 5, all four edges are movable. It is also
assumed that in both cases the thickness of face sheets remains un-
changed (L, =24in.,h; =0.02 in., and A, =0.5 in.). From Figs. 5
and 6, it becomes evident that for any considered panel aspectratio,
an increase of the number of layers in each face, without the in-
crease of their thickness, is accompanied by a slight increase of the
buckling strength. This trend becomes more evident from Table 3,
where the first two considered sandwich panels are identical with
those described in Figs. 5 and 6, whereas the third one, has the
top and bottom face sheets made up of five layers in the sequence
[6/ —6/ 6/ — 6/ 6]. For all of these three considered panels, the thick-
ness of face sheets is the same. The results shown in Figs. 5 and 6
alsoreveal thatfor aspectratios v <1, the buckling strengthis more
sensitive to the variation of ply angle than for panels of aspectratio
vy > 1. In addition, from both Figs. 5 and 6 and Table 3, it becomes
apparentthat with the increase of the panel aspectratio, both a decay
of the maximum buckling strength and a shift of the corresponding
ply angle toward smaller angles are experienced.

Notice that in Figs. 5 and 6, for any v <1.2, the minimum buck-
ling load prior to the first discontinuitieshave been determined for
m =n =1, whereas the remaining parts of the curves have been
determined for m =2, n =1. However, for v > 1.2, there are no
changes in the mode number for the minimum buckling load, that
is, in this case this condition is obtained throughout form =n =1.

In Fig. 7, the case of sandwich panels whose face sheets are
made up from three layers arranged in the sequence [0/ — 6/ 0] was
considered. For this case, it was assumed that the thickness of each
constitutentply is #, =0.02 in. With the exception that in this case
the face sheets are three times thicker than in Fig. 6, the remaining
mechanical and geometrical characteristics are identical.

The comparison of the results from Figs. 6 and 7 reveal that
the increase in the thickness of face sheets results in a tremendous
increase of the buckling strength.In addition, as compared to Fig. 6,
Fig. 7 reveals that, besides the significant beneficial effect on the
bucklingstrengthresulting from the increasein face-sheetthickness,



HAUSE, JOHNSON, AND LIBRESCU 337

a0 - ~7.00
6.12
= €
% 5.25 E
2 z
) 437 2
’: x
Zi s Z
8 g
> 262 2
£ £
= 3
[X3
a 4175 §
51 : 0.87
{6/-6/0] 16
0 1 1 1 1 | i il 000
0 15 30 45 60 75 90

Ply Angle, 0 (Deg.)

Fig. 7 Counterpart of Fig. 6, where each of the face sheets is three
times thicker than in Fig. 6.
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Fig. 8 Uniaxial buckling load vs panel aspect ratio for a flat sandwich
panel.

no notable differences regarding implications of the aspect ratio
coupled with that of the ply angle, as well as of the mode number
rendering the minimum buckling load, can be reported.

Effect on Buckling Strength of Panel Aspect Ratio, in Conjunction
with Selected Layups

In Fig. 8, the variation of the buckling load as a function of the
panelaspectratiois presented.InFig. 8, L; =24 in., h, =0.0251n,
and i, =0.5in. and the materials are F2 and C1. All edges are freely
movable. The panel is considered to be uniaxially compressed, and
each face sheet is made up of five laminae in three differentlayups.
In all of these cases, a strong decrease of the buckling strength
as a result of the increase in the panel aspect ratio is experienced.
The [90/ —90/90/ —90/90 deg] layup appears to exhibit the lowest
buckling strength up to an aspect ratio y =2.4, beyond which the
[45/—45/45/ —45/45 deg] layup exhibits the lowest buckling load.
This latter layup also exhibits the largest buckling strength of the
three layups, up to an aspect ratio of y =2.4. For aspect ratios
greater than yw = 2.4, the [0/0/0/0/0] layup yields the largest
buckling strength.

Figure 9 represents the counterpartof Fig. 8 in the sense that, for
this case, the unloaded edges are considered to be immovable. The
buckling loads appear to occur at smaller values than for the case
of all four edges being movable. This difference appears to be more
pronouncedat smaller aspect ratios, as opposed to the larger aspect
ratios. The decay of the buckling strength for panels featuring im-
movableedgesis attributedto the buildup of compressivestressesin
the unloaded direction. A similar trend emerges also when compar-
ing the results in Fig. 3 with their counterpart obtained for a panel
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Fig. 9 Counterpart of Fig. 8 for the case of two immovable unloaded
edges.
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Fig. 10 Influence of fiber orientation in the face sheets considered in
conjunction with that of the aspect ratio on the uniaxial compressive
buckling of a sandwich panel.

featuring movable edges, Fig. 2. In addition, the [0/0/0/0/0] and
[90/ —90/90/ —90/90 deg] layups relative to one another reveal the
same trend of variation as in the case of all four edges being mov-
able. In contrast to the case of all four edges being movable, in this
case the [45/ —45/45/ —45/45 deg] layup features the least buck-
ling strength of the three layups, up to the aspectratio panel v =1,
beyond which this layup exhibits the largest buckling load capacity
to an aspect ratio of y =1.75. Finally, from an aspect ratio panel
v =2.1, this layup features the lowest buckling strength.

Effect on Buckling Strength of Transverse Shear Properties
of the Core

Figures 10 and 11 show the uniaxial buckling response for a
sandwich panel whose face sheets are constituted each of four plies
in the sequence [0/ —6/—6/0]. In Figs. 10 and 11, L, =24 in.,
h; =0.08 in., and &, =0.5 in. All edges are freely movable. The
only difference consists of the mechanical constants for the core. In
Fig. 10 the core is made up from material C3, and in Fig. 11 from
material C1. The results allow to infer the implicationsof transverse
shear stiffness characteristicsof the core on the buckling strength of
uniaxially compressed sandwich panel. The results reveal the pow-
erful role played by transverseshear stiffness characteristics, whose
increase is associated with a significant increase of the buckling
strength. In addition, as the results of Fig. 11 compared with those
of Fig. 10reveal, an increase of the ratio of the core transverse shear
moduli G5/ G tendsto shift the occurrence of the maximum buck-
ling load toward larger ply angles and also to yield larger variations
of the buckling loads vs the ply angle as compared to the case of
lower ratios of transverse shear moduli.
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C1.
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Fig. 12 Load-deflection amplitude interaction for a uniaxially com-
pressed flat sandwich panel, whose face sheets are made up each from
one layer.

Postbuckling Response of Sandwich Panels

The effectof the ply angle of the material of the face sheets on the
edge load-center deflection interaction of a uniaxially compressed
sandwich panel is shown in Fig. 12. Herein the top and bottom
face sheets are made up of a single layer, each of the material F1.
L, =L, =24in.,h; =0.02in.,and s, =0.5 in. All edges are freely
movable.

The results reveal that the buckling bifurcation loads identified
by the filled circles on the ordinate increase to ply angle of 45 deg,
after which, as the ply-anglesincreases, the bucklingload decreases.
A similar trend can be seen in the deep postbuckling range, where
as the ply angles increase, the load-carrying capacity of the panel
decreases. For the Fig. 12 case, a titanium honeycomb core (C1),
which exhibits the largest transverse shear moduli among the mate-
rials from Table 2, was considered.

In Fig. 13 the aluminum honeycomb (C3) characterized by much
lower transverse shear stiffness characteristics is used for the core,
and the considered thickness of face sheets is more than double that
in Fig. 12. The results shown in Fig. 13 reveal that the two effects
that are contradictory in nature, namely, increase of thickness of
face sheets, on one hand, and decrease of transverse shear moduli
of the core, on the otherhand, compensate each other, so that finally
the buckling strength and load-carrying capacity in the postbuck-
ling range remain roughly unchanged. However, because the ratio
G5/ G,z islowerin the latter case, a more reducedsensitivity of both
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Fig. 13 Counterpart of Fig. 12 for the case of the core made of the
material C3, with top and bottom face sheets of thickness i = 0.05 in.
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Fig. 14 Counterpart of Fig. 12, for the case of face sheets constituted
each of three layers whose total thickness is equal with that in Fig. 12.

the buckling strength and load-carrying capacity in the postbuck-
ling range to the variation of the ply angle is experienced. Moreover,
consistent with what was remarked when the results of Fig. 11 were
compared with those of Fig. 10, in this case the decrease of the ratio
G153/ Gy results in a shift of the bucklingloads toward lower ply an-
gles and less sensitivity of the buckling and load-carrying capacity
to the ply angle variation.

InFig. 14, the panel featuresthe same geometricaland mechanical
characteristicsas in Fig. 12, excepting that each face is made up of
threelayersin the sequence[6/ — 6/ 6]. In spite of this, theirthickness
is the same as for one layer, that is, as in Fig. 12. The same type of
behavior can be seen in the deep postbuckling range but differs at
the bucklingbifurcation. It is revealed that, at the smaller ply angles,
the buckling bifurcation as well as the load-bearing capacity are a
little larger as opposed to the trend appearing in Fig. 12.

The increase of face-sheet thickness yields a dramatic increase of
both the buckling loads and load-carryingcapacity in the postbuck-
lingrange. In contrastto Fig. 14, Fig. 15 shows the same conditions
and interactionsbut for a larger face-sheet thickness; now the thick-
ness of each of the face sheets is three times larger than that corre-
sponding to Fig. 14. In spite of this modification, no change in the
behavioras comparedto thatin Fig. 14 is emerging; as the ply angles
increase, in the deep postbuckling range the load-carrying capacity
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of the panel decreases. The counterpart of Fig. 15 portraying the
load-end-shorteninginteractionis shown in Fig. 16. The results of
Fig. 16 reveal that, as the ply angle increases, the end shortening
increases as well. For fixed compressive edge loads, at lower ply
angles, much smaller end shortenings than at larger ply angles are
experienced.

Figure 17 representing the counterpartof Fig. 15, correspondsto
the case of panels featuring two immovable unloaded edges. For this
case it is revealed that the buckling occurs at much lower compres-
sive loads for all considered ply-angle configurations. In addition, it
is apparent that the maximum buckling bifurcationoccurs at the ply
angle 0 =30 deg, as opposed to 8 =45 deg, as seen earlier in the
case of all four edges being movable. Moreover, in contradistinction
with the case of all edges being movable, in this case, at larger ply
angles, for example, 0 =60, 75, and 90 deg, the sensitivity of the
variation of buckling strength and load-carrying capacity with that
of ply angle is almost nonexistent.

Figure 18 showing the load-end-shortening dependence repre-
sents the counterpart of Fig. 17. Figure 18 reveals that for a given
compressive edge load, at large ply angle, the end shortening is
larger than for smaller ply angles. In addition, it is also shown that,
in contrast to the case of all four edges being movable, in the case
of two immovable unloaded edges the buckling bifurcation occurs
at much smaller magnitudes of the end shortening.

Figure 19 shows the case of a flat sandwich panel whose top and
bottom face sheets are made up each from three (of the material F1)
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Fig. 20 Nonlinear response of a sandwich geometrically imperfect flat
panel.

layers in the sequence [45/ —45/45 deg], whereas the core is of the
material C1. L; =L, =24 in., h; =0.02 in., and h. =0.5 in. All
edges are freely movable. The panel is considered to be subjected to
the compressiveload N, ontheedgesx; =0, L, and to the compres-
sive/tensile loads Ny, on the edges x, =0, L,. As a result, the edge
load ratio L g(= Nyn/Nyy) is Lg >0, Ly =0, and Ly < 0, depend-
ing on whetherN,, > 0 (corresponding to compression), N,, =0, or
N, < 0 (corresponding to tension), respectively. One supposes that
the compressiveload Ni1 increases gradually. The results reveal that
a considerable increase of the buckling strength is achieved by ap-
plyinganincreasedtensionon the edgesx, =0, L,. The same canbe
inferred about the postbuckling behavior. In contradistinction with
this case, when all of the edges are subjected to compressive loads,
a decrease of the buckling strength is experienced.

Effects of the Combined Compressive Edge Load and Temperature

In Fig. 20 one considers the case of flat sandwich panels whose
top and bottom faces are made up from three layers of equal
thickness in the sequence [0/0/0 deg]. The material of the face
sheetsis F1 and the coreis C3. L} =L, =24 in., h; =0.011251in.,
and s, =0.35 in. All edges are freely movable. The panel is ex-
posed to an antisymmetric temperature gradient through the panel
thickness, the temperature amplitude on the bottom plane, 7, is
assumed to be positive. This implies that the temperature field
T (xy, x5, x3) =x3(2/ H)T,(x, x,). It is assumed that the panel fea-
tures an upward initial geometricimperfection,w =—0.0875in. and
that the edges x; =0, L, are subjected to the compressive preload
N;; =18501b/in. The results reveal that under these conditions, for
T, = 0, the panel exhibits a negative (upward) initial deflection.
With the increase of T}, the deflection becomes gradually less nega-
tive; for a certain 7, depending on the ply angle, a limit temperature
is reached, which, by further increase of 7, is followed by a snap-
through buckling. At the same time, the results reveal that for some
ply angles, for example 0 =30, 45, and 60 deg, the intensity of
the snap through can dramatically be attenuated and can even be
eliminated altogether, for example, for 0 =45 deg.

Conclusions

Theresults presentedconcernthe behaviorof sandwich flat panels
with anisotropic face sheets subjected to uni/biaxial edge loads and
an antisymmetric through panel wall-thickness temperature gradi-
ent. The material of each constituentlamina of the face sheets was
considered to feature anisotropic properties induced by the rota-
tion of the fibers in each constituent ply with respect to the axes
of the structure. With the generation of stiffness quantities A, and
D, (oo =1,2), induced by this off-axis material configuration, an
increase in the buckling strength and postbuckling is experienced,
The results indicate that the directionality property of facings can
play a tremendous role toward enhancing the buckling strength and

the load-carrying capacity in the postbuckling range. The implica-
tions of immovability of unloaded edges and of elastic characteris-
tics of materials of face sheets and of the core on the buckling and
postbuckling strength have also been highlighted, and their impor-
tant role in enhancing the buckling strength and the postbuckling
response behavior was emphasized.

Moreover, it was shown thatin some complex loading conditions,
when also flat sandwich panels can experience snap-through buck-
ling, a judicious use of the directional properties of the material of
face sheets can result in the attenuation of its intensity and even in
its elimination altogether.

Appendix: Strain-Displacement Relationships
Bottom face sheets:
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